SAID integrated web application for easier dam operation

Sergio Romero
October 19 2016, Lourdes (France)
Integration dimensions

Integration scenarios
Identification of new scenarios, DSS interactions and constraints aimed at efficient river basin exploitation

Computational cores
Technological support for the coordination and communication of the computational cores of different DSSs

Graphical user interface
Unified interface oriented to final users for the definition of scenario parameters and analysis of results

Data management
Repository of data series obtained from external systems, typically in different representation formats

Co-funded by the seventh framework programme (FP7), under grant agreement no. 619132, within the Water Inno & Demo-1
Integration scenario: Flood

Simulation of reservoir inflow (72 hrs)

Set reservoir constraints (e.g. level, outflow)

Optimization of dam maneuvers

Simulation of reservoirs and downstream flow

NOTES

• Guadalhorce & Guadalteba modeled as one single reservoir
• Water quality and energy concerns not considered
• Results include the dynamic state of dam elements (outlets, spillways, ...)

Co-funded by the seventh framework programme (FP7), under grant agreement no. 619132, within the Water Inno & Demo-1
Integration scenario: Ordinary

Simulation of reservoir inflow (72 hrs)
Set water demand and quality constraints (e.g. objective salt concentration)
Calculation of water mixture
Guadalhorce + La Encantada (urban supply)
All reservoirs + La Encantada (urban and irrigation)
Set energy constraints (e.g. plant capacity, availability)
Optimization of energy production

Demand exceeds plant capacity
[no]
[yes]
Optimization of dam maneuvers (additional water release)
Simulation of reservoirs and downstream flow

NOTES
• Objective salt concentration below 6 g/L (urban) and 0.8 g/L (urban+irrigation)
• WQ-DSS provides daily results and EM-DSS produces detailed hydrographs
Technological requirements

- **Distributed computing**: DSSs and peer applications running on different computers and networks require communication.
- **Application heterogeneity**: windows-linux OSs, java-.net languages, web-desktop applications, consumer-producer patterns.
- **Extensibility**: new DSSs could be added to the framework or the entire solution migrated to a different river basin.
- **Real-time execution**: applications should react and produce results as soon as new input data are available (e.g. river flood).
- **Feasibility**: Moderate efforts to incorporate integration technology into existing DSSs (project deadlines).

Co-funded by the seventh framework programme (FP7), under grant agreement no. 619132, within the Water Inno & Demo-1.
Service orientation

- SAID DSSs provide integration functionality by means of simulation, configuration and data query **machine-to-machine services**

<table>
<thead>
<tr>
<th>DSS</th>
<th>Description</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM-DSS
Hydroview</td>
<td>Run forecast simulation</td>
<td>• Time period
• Reservoir outflow</td>
<td>• Reservoir volume and inflow
• Water flow and level at control points
• Resultant flood plain</td>
</tr>
<tr>
<td>FM-DSS
BeDam</td>
<td>Synthesis of maneuvers</td>
<td>• Reservoir inflow
• Optimization mode
• Constraints</td>
<td>• Reservoir volume
• Outlet and spillway opening degree
• Total outflow of each reservoir</td>
</tr>
<tr>
<td>WQ-DSS</td>
<td>Water mixture calculation</td>
<td>• Water demand
• Salt concentration
• Reservoir balance</td>
<td>• Composition of water mixture</td>
</tr>
<tr>
<td>EM-DSS
ELD</td>
<td>Power plant optimization</td>
<td>• Plant capacity
• Service time
• Released volume</td>
<td>• Optimal power plant hydrograph
• Energy production
• Total profit</td>
</tr>
</tbody>
</table>

Co-funded by the seventh framework programme (FP7), under grant agreement no. 619132, within the Water Inno & Demo-1
Co-funded by the seventh framework programme (FP7), under grant agreement no. 619132, within the Water Inno & Demo-1
Integrated DSS: web interface

Co-funded by the seventh framework programme (FP7), under grant agreement no. 619132, within the Water Inno & Demo-1
Tool for observed data
Observed data: networks

Co-funded by the seventh framework programme (FP7), under grant agreement no. 619132, within the Water Inno & Demo-1
Observed data: alarms
Observed data: graphs

Co-funded by the seventh framework programme (FP7), under grant agreement no. 619132, within the Water Inno & Demo-1
Flood scenario simulation
Flood mode: constraints

Co-funded by the seventh framework programme (FP7), under grant agreement no. 619132, within the Water Inno & Demo-1
Flood mode: manoeuvres

Co-funded by the seventh framework programme (FP7), under grant agreement no. 619132, within the Water Inno & Demo-1
Flood mode: simulation

Co-funded by the seventh framework programme (FP7), under grant agreement no. 619132, within the Water Inno & Demo-1
Ordinary scenario simulation
Ordinary mode: constraints

Energy parameters

- Guadalhorce-Guadalteba
 - Plant capacity (m3/s): 15.00
 - Nominal head (m): 49.00
 - Global efficiency (%): 90.00

Water Quality parameters

- Conde del Guadalhorce
 - Plant capacity (m3/s): 20.00
 - Nominal head (m): 49.00
 - Global efficiency (%): 90.00

Downstream simulation

Power plant schedule

<table>
<thead>
<tr>
<th>Day 1 20/03/2015</th>
<th>Day 2 21/03/2015</th>
<th>Day 3 22/03/2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>GH-GT</td>
<td>CdG</td>
<td>GH-GT</td>
</tr>
<tr>
<td>Start #1</td>
<td>Stop #1</td>
<td>Start #2</td>
</tr>
<tr>
<td>09:00</td>
<td>14:00</td>
<td>16:00</td>
</tr>
</tbody>
</table>

Work hours: 8.0

Update Work hours
Ordinary mode: simulation (I)

Co-funded by the seventh framework programme (FP7), under grant agreement no. 619132, within the Water Inno & Demo-1
Ordinary mode: simulation (II)

Co-funded by the seventh framework programme (FP7), under grant agreement no. 619132, within the Water Inno & Demo-1
Other features

- Predefined user roles and information levels
 - Access to specific collections of observed data/forecasts
 - Permissions to launch ordinary and/or flood simulations
- Concurrent access to the DSS
 - Multiple users can explore SAID data with a web browser
 - Simulations limited to a number of concurrent users
- Automatic update of river basin response
 - River model executed in a continuous basis (once a day)
 - Climate data and dam discharges in the last 24 hours used
Conclusions

- The Integrated DSS allows complex decision making based on parameters and objectives of different domains (flood control, water quality, energy production)
 - Monitoring of observed data and DSS variables
 - Predictive simulations involving multiple DSS interactions
- Required user interactions are greatly simplified
- The proposed framework is modular and reusable, and can be exported to other river basins with reasonable efforts
- Integration in SAID is being addressed using modern practices of distributed systems and software engineering
Thank you for your attention

www.said-project.eu