

Andrew Cohen
University of Arizona

African Great Lakes Conference
Entebbe-May 2017

Talk Outline

- Rationale/need for paleoecological records.
 - -What kind of information can we learn?
 - -Examples that made a difference for lake management and why?
- Length of records useful for lake management?
- Limitations to integration with modern observational time series
- **Examples from Lake Tanganyika**
 - -Sedimentation Impacts
 - -Climate Change

Future work and recommendations: Reconciling results on different time scales, more realistic paleo-inferences of interactive effects, training needs

Issues Paleo-records Can Address

Timing/rate of environmental & ecosystem changes

Range of pre-impact variability?

Disentangling interactions(e.g. L. Victoria (e.g. Hecky et al., 2010)

Implications for mitigation measures

Importance of QA/QC-the legal side of impacts

Paleo-pH Records:

Key to Resolving Acid Precipitation Debates in N. America & Europe e.g. Ljosvatn, Norway

Rates of Change-Example from L. Malawi Drill Core

Case Studies From Lake Tanganyika Cores

- Sedimentation Impacts From Deforestation In Lake Tanganyika Watersheds
- Impacts from Lake Warming on the Tanganyikan Ecosystem

Approaches to Studying Watershed Deforestation

Experimental (Subannual-Multiannual Time Scales;

Distributional-Timescales Uncertain;

Paleoecological-Annual to >Millenial Time Scales

Timing Of Major Sedimentation Changes East Coast of Lake Tanganyika

Mid 19th C. (Karonge/Kirasa), ~1960/mid 20th C. (82R, 98R, Kar #3)

19th C. and early 1960s (37R, MWA-1), No change at 58R

1961 (Malagarasi, 14V)

40% decline (S. Malagarasi Platform, 57V)

1961 (Kabesi 18R, no change at 61V) 85% decline in 18th C, constant since then (12M)

OSTRACODE STRATIGRAPHY-98-18M (KABESI RIVER DELTA)

Lessons Learned for Lake Management

- Reconciling Short Term Monitoring Results with Long Term Paleorecords
- Donoghue et al. (2003) higher sediment discharge in a small mountain stream with less sediment retention than larger catchment. Erosion resistance also important
- Alin et al. (2003) and Cohen et al (2005)-longer term changes in fauna appear more muted adjacent to smaller catchments. Sublacustrine slope important
- Other factors at play? Timing suggests climate change and interactive effects

Lake Tanganyika Warming Effects - Coring Sites

KH1 and MC1 (303m)

Data: Tierney et al., 2010 (using global calibration of Powers et al., 2010, Kraemer et al., 2015 model surface water lake temp. and Cohen et al., 2016

Hypothesized Responses To Warming

Cooler Lake

- Deeper Mixing Nutrient Increase
- Higher SurfacePrimaryProductivity
- Higher Secondary& Fish Productivity
- Deeper Oxicline And Benthic Habitat

P, N, Si
P, N, Si
P, N, Si

P, N, Si Oxicline-

P, N, Si

Fossil fish bones, teeth and scales: Lake Tanganyika KH1 core

Warmer Lake

- Reduced Mixing Epilimnion Nutrient Pool Decline
- Less Surface
 Primary Production
- > Fish Decline
- Oxicline Shallows Benthic Habitat Shrinks

Paleoecological Responses To Warming

Cohen et al., 2016 PNAS

20th C Abundances of Fish and Molluscs Outside Pre-20th C Norms

Nyanza-Lac Platform (southern Burundi)

Could Paleorecords (Coupled with Modeling) Help?

Conclusions

- Paleo-data provide long-term view of African lake ecosystem response to change, particularly for conditions not previously encountered over instrumental time scale
- ➤ At Tanganyika both sedimentation and climate change have had major impacts on decadal to centurial time scales. Need for replication and understanding of interactions -Paleo-records plus modeling?
- Need to incorporate paleorecords into "monitoring" programs throughout GLA: Training of African students for conducting this research as routine part of lake management.

