

Programme of measures in the Júcar Hydrological District

Javier Ferrer Polo

Júcar River Basin Authority

INDEX

- 1. Júcar River Basin
- 2. Programme of Measures of RBMP
- 3. Pressures & Measures
- 4. Investment and implementation of the Programme of Measures
- 5. Conclusions

1. JÚCAR RIVER BASIN

CUENCA DEL GUADIANA **Demand distribution by** origin and typology:

Surface (km²) 42.851 **Permanent** 5.162.163 Population (2009) **Tourism equivalent** 404.883 population (2009) **Irrigation surface** 371.990 2009 (ha) Water demand 2009 3.155 (hm³/year)

Agricultural demand represents 79% of the total demand of the **JRBA**

Groundwater origin represents 51% of the total water resources of the JRBA

1. JÚCAR RIVER BASIN

304 surface water bodies: rivers

Transitional water bodies: 4

19 surface water bodies: lakes

Identification and delimitation of water bodies

90 groundwater bodies

Coastal water bodies: 22 (16+6)

2. PROGRAMME of MEASURES RBMP

3. PRESSURES & MEASURES

HYDROMORPHOLOGICAL PRESSURES

SUMMARY PROPOSED MEASURES

ACTION TYPE	Nº	INVESTMENT M€
Demolition non-used auxiliary dams	56	2,27
Fishways	199	25,37
Demolition of river channelling	14	32,68
Reduction of invasive	2	1,96
Re-vegetation and river bed restoration	15	143,87
Environmental restoration of river beds and wetland recovery	46	152,41
Other: Coastal hydromorphological restoration actions	104	209,29
TOTAL	436	567,85

MEASURES' EFFECTS EVALUATION

THE ADOPTION OF MEASUERES MANAGES TO REDUCE HMWB FROM 39% TO 17 %

3. PRESSURES & MEASURES

WATER QUALITY PRESSURES

SUMMARY PROPOSED MEASURES

ACTION TYPE	NºACTIONS*	INVESTMENT M€
Measures Directive 91/271/CEE (B)	497	1417
Other basic measures (OB): Storm tanks and discharge control plans	65	373
Complementary measures (C): Quality improvement, discharge reduction	92	220
TOTAL	654	2010

MEASURES' EFFECTS EVALUATION

BLOCK 2. OBJECTIVES GWB & DEMANDS

3. PRESSURES & MEASURES

QUALITY PRESSURES

• DIFFUSE POLLUTION: AGRICULTURAL <u>NITRATES</u>

PROPOSED MEASURES

- REDUCTION CONTAMINATION BY NITRATES THROUGH:
 - CONTAMINATION CONTROL PLANS
 - GOOD PRACTICES' CODES

22 GWB BAD QUIMICAL STATUS

MEASURES' EFFECTS EVALUATION

DUE TO THE INERTIA OF THE ACTION MEASURES AGAINST DIFFUSE CONTAMINATION (NO3) IT IS NOT POSSIBLE TO FORESEE A COMPLETE OBJECTIVE COMPLIANCE BEFORE 2027

BLOCK 2. **OBJECTIVES GWB & DEMANDS**

3. PRESSURES & MEASURES

HIGH WATER PUMPING

MEASURES' EFFECTS EVALUATION

ACTION TYPE	NºACTIONS	INVESTMENT M€	WATER RESOURCES INCREASE hm3/year
MODERNISATION	415	1507	116 (+163)
REUSE	52	643	143
DESALINATION	17	419	67
IMPROVE SURFACE USE	95	1374.7	143
TOTAL	579	3943.7	469

Action type WB type

IMPORTANT INVESTMENT IN IRRIGATION DERNISATION BUT WATER RETURN REDUCTION NEED OF CONVENTIONAL AND NON-CONVENTIONAL **RESOURCES** IMPORTANCE OF IMPROVEMENT OF GWB QUANTITATIVE **STATUS**

3. PRESSURES & MEASURES

Hydrological planning in Spain includes also flood protection objectives

FLOOD RISK Cash Harman Riph Burl Riph Bur

PROPOSED MEASURES

- FLOOD LAMINATION
- RIVER BED ADAPTATION
- DAMAGE MITIGATION

ACTION TYPE	NºACTIONS	INVESTMENT M€
EXTREME PHENOMENA: FLOODS	79	3402

MEASURES' EFFECTS EVALUATION

•MINIMISING DAMAGES DUE TO FLOODS

INVESTMENTS TO MITIGATE DAMAGES DUE TO FLOODS REPRESENT AN IMPORTANT AMOUNT IN THE TOTAL OF THE PROGRAMME OF MEASURES

4. INVESTMENT AND IMPLEMENTATION OF THE PROGRAMME OF MEASURES

Total investment draft PoM (2005-2015*): 9933Mil. €

BUDGETARY DISTRIBUTION PER BLOCKS

FORESEEN: 2012- 2015*

■ BLOCK 1. Surface WB

■ BLOCK 2. Ground WB

■ BLOCK 3. Floods

BUDGETARY CAPACITY EVALUATION. HZ 2015, 2021, 2027

TOTAL. BLOCKS 1+2+3

WITHOUT EXTREME PHENOMENA. BLOCKS 1+2

5. CONCLUSIONS Júcar River Basin District

- •Hydrological planning in Spain includes environmental objectives (RBMP), as well as meeting water demand and flood protection.
- The adoption of measures for hydromorphological pressures mitigation achieves and important reduction of HMWB, from **39%** to **17%**.
- The achievement of good status of SWB is associated mainly to discharge treatment measures, with important investments in basic measures (D91/271 CE) of almost **1.500 m**€.
- Treatment measures hardly achieve the environmental objectives in some SWB (7%), due to the scarce circulating flow: effort in establishing minimum environmental flows.
- The main problem in the chemical status of GWB is nitrate contamination from agriculture (24%): the great inertia of the process results in some cases in extensions up to 2027 (9%)
- The main environmental problem in the JRBD is the quantitative status of its (38%), hardly separable of the adequate demand satisfaction.
- The adopted measures for agricultural demand reduction due to irrigation modernisation and conventional and non-conventional additional resources represent an investment of almost **4.000 m** € and allow to jointly provide more than **450** hm3/year.
- The inclusion in hydrological plans of measures against floods increases the need for investment in an important way and represents **34**% of the total.
- •The total investment, by the different administrations, is almost **10.000** m €, of which more than **7.000** m € are subsequent to 2012:
 - •Uncertainty about the real financing capacity in time of crisis: 80% historical.
 - •Globally, a financing horizon for **2027** is foreseen, which could be reduced to **2021** if measures against floods had independent financing.

Thank you for your attention