# Challenges and approaches for assessing and monitoring ecological status as required by the Water Framework Directive

- Anne Lyche Solheim and Kari Nygaard,
  Norwegian Institute for Water Research (NIVA)
- Presentation given at "EUROINBO" conference, Krakow Poland, 27th Sept. 2004

### **Outline**

- Main challenges for ecol. status assessments
- Approaches used at NIVA to meet these challenges and assist Norwegian authorities
- Main challenges for monitoring ecol. status in freshwater and marine waters
- Approaches used at NIVA to design WFDcompatible monitoring of ecol. status and develop new monitoring methods



### Main challenges for ecol. status assessments

- Develop a typology for rivers, lakes and coastal waters
- Assess reference conditions for each type
- Assess the response of different biological elements along different pressure gradients
  - Develop biological indicators to measure the response
- Set boundaries between different ecol. status classes based on pressure-impact relationships using biological indicators



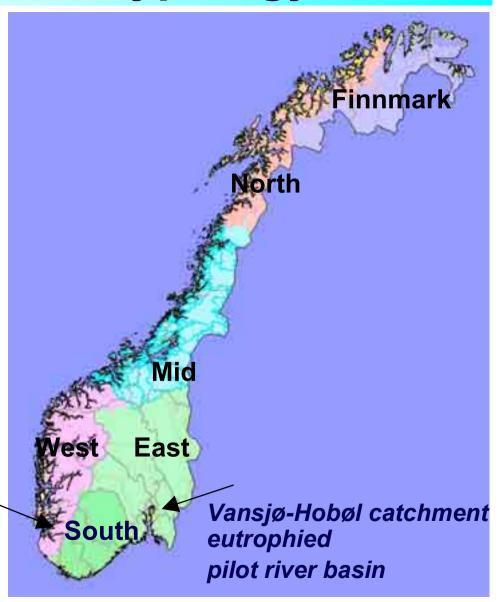
## Approaches used at NIVA to meet these challenges and assist Norwegian authorities

- Typology developed for all water categories:
  - Lakes and rivers: 6 ecoregions and 23 types in each region based on differences in altitude, size and geology defined as alkalinity and colour
  - Coastal waters: 4 ecoregions and 5-7 types in each region based on differences in salinity, tidal range and wave exposure

### Lake and river typology

#### • Altitude:

 Lowland, boreal, highland


#### Size:

- Lakes: <0.5 km<sup>2</sup>, 0.5-5 km<sup>2</sup>, > 5 km<sup>2</sup>
- Rivers: < 100 km<sup>2</sup>, 100-1000 km<sup>2</sup>, > 1000 km<sup>2</sup>

#### Geology:

- Alkalinity: < 0.2 meq/L, 0.2-1 meq/L, > 1 meq/L
- Colour: < 30 mg Pt/L,</li>>30 mg Pt/L (humic)

Suldal catchment heavily modified pilot river basin



### Norwegian coastal types

Norwegian Sea (7 types) Euhaline. Mesotidal

X-exposed Open coast **Exposed Archipelago** Sheltered fjord Sheltered, Long Residence time

Sheltered, Polyhaline (<30)

Sheltered, Mesohaline (<18) **Strong Current Straits** 

Stad North Sea (6 types) 62°N, 5°E

Euhaline, Micro tidal

V-exposed Open coast **Exposed Archipelago** 

Sheltered fjords

Sheltered, Long Residence time Sheltered, Polyhaline Sheltered, Mesohaline

58°N 7°E indesnes Exposed open coast Mod.exp. archipelago

Sheltered fjords Sheltered and Long Residerce time Sheltered, Mesohaline (

Very sheltered meso/oligohaline

Skagerrak (6 types) Polyhaline (<30), Micro tidal

Loppa 70°N, 21°30'E

Barents Sea (5 types)

X-exposed Open coast

Sheltered, Polyhaline (<30)

**Exposed Archipelago** 

**Strong Current Straits** 

Sheltered fjord

Euhaline, Meso tidal

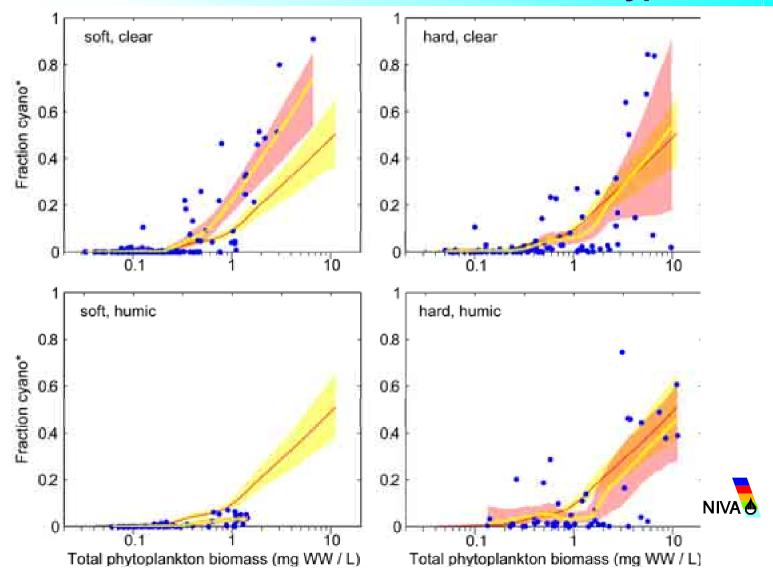
### Assessing reference conditions

- Fact sheets developed for each type of water body, showing natural flora and fauna, based on existing monitoring data from unpolluted rivers, lakes and coastal areas
- For types where there are no unpolluted sites, such as lowland lakes with moderate alkalinity, paleo-ecological data or land-use models will be used (work done within the new EU project REBECCA)



### Development of biological indicators to assess the response of different biological elements along different pressure gradients

- Indicators developed for:
  - Phytoplankton in lakes
  - Benthic fauna in rivers
  - Macroalgae in coastal waters
  - Benthic fauna in coastal waters (soft-bottom)
- Indicators for other elements will be developed in 2005
- Work funded by Norwegian Research Council, national authorities (EPA) and the EU project REBECCA




### Setting boundaries between different ecol. status classes based on pressure-impact relationships using biological indicators

- Analyzing shape of pressure-response curves for different biological indicators and different types of water bodies
- Using different statistical techniques to propose possible boundaries between classes of ecol. status
- Participating actively in Intercalibration within the CIS Working group 2a – Ecostat to compare and adjust Norwegian boundaries for H/G and G/M status classes



#### Biological indicators: Phytoplankton in lakes Non-linear regression analysis of % bluegreens vs. total biomass in four different lake types



### Biological indicators: Benthic fauna in coastal waters

|                         | Percentile (cumulative) | 5 %   | 15 %    | 35 %    | <b>70 %</b> | 100 % | 85 % |
|-------------------------|-------------------------|-------|---------|---------|-------------|-------|------|
| Parameter               | N obs                   | V     | IV      | III     | II          | I     | Ref. |
| $H_{63}$                | 334                     | 0-1.3 | 1.3-2.1 | 2.1-2.9 | 2.9-3.7     | >3.7  | 4.0  |
| ES100 <sub>63</sub>     | 304                     | 0-8   | 8-12    | 12-16   | 16-23       | >23   | 26   |
| S04 <sub>63</sub>       | 326                     | 0-6   | 6-20    | 20-35   | 35-50       | >50   | 58   |
| $SN_{63}$               | 328                     | 0-1.4 | 1.4.1.7 | 1.7-1.9 | 1.9-2.1     | >2.1  | 2.2  |
| ISI <sub>depth200</sub> | 903                     | 0-4.8 | 4.8-6.6 | 6.6-8.3 | 8.3-9.4     | >9.4  | 9.9  |



### Main challenges for monitoring ecol. status in freshwater and marine waters

- Designing catchment based monitoring
- Designing different programmes for surveillance and for operational monitoring
- Selecting representative monitoring sites
- Selecting cost-efficient parameters enabling calculations of all relevant biological indicators and their supporting elements
- Selecting a monitoring frequency which provide sufficient statistical power to distinguish natural variation from human impact
- Develop new methods for cost-efficient monitoring of biological elements

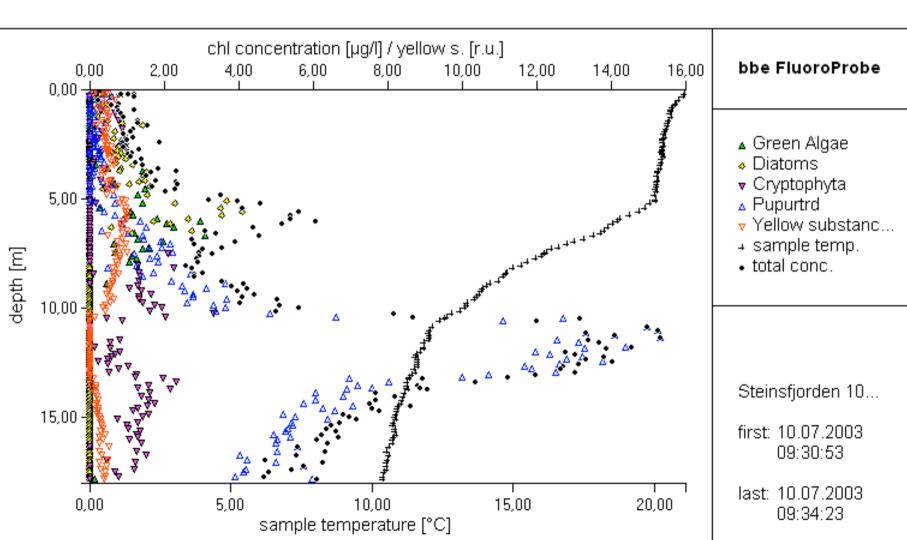


Data flow and reporting

### NIVA approaches to develop new WFD-compatible monitoring programmes

- Selecting sites for surveillance monitoring based on results from characterisation of water bodies (WFD-Article 5), in which areas "not at risk of failing the objective of good status" were identified
- Designing operational monitoring for water bodies identified as being "at risk of failing the objective of good status"
- Developing new methods for monitoring biological indicators:
  - Satellite images for algal pigments, turbidity and colour
  - In situ sensors for phytoplankton pigments
  - ROV-technology for macrophytes
  - Image analysis combined with automatic cell counters

### Cost-efficient monitoring of phytoplankton biomass and taxonomic composition in lakes

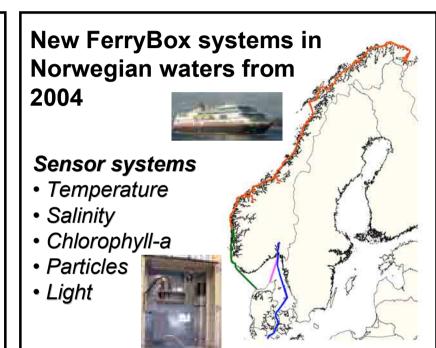

#### Fluoroprobe –

 new multi-sensor for simultaneous measurements of chlorophyll in different algal classes





#### Chlorphyll profiles from FluoroProbe, for different algal classes




### Ferry Ships – a new platform for marine environmental surveillance

### The EU-project FerryBox – from on-line oceanographic observation to environmental information

• Eutrophication and plankton productivity, transport of particles and contaminants, stability and transport of water masses and satellite data validation (ocean color).





#### Automatic water sampling

- Harmful Algal blooms
- Nutrients
- Micropollutants

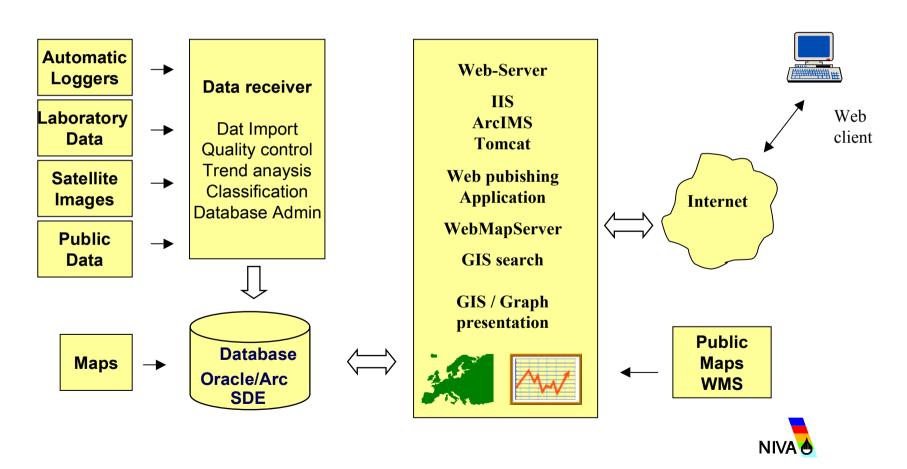


### Development of new monitoring methods

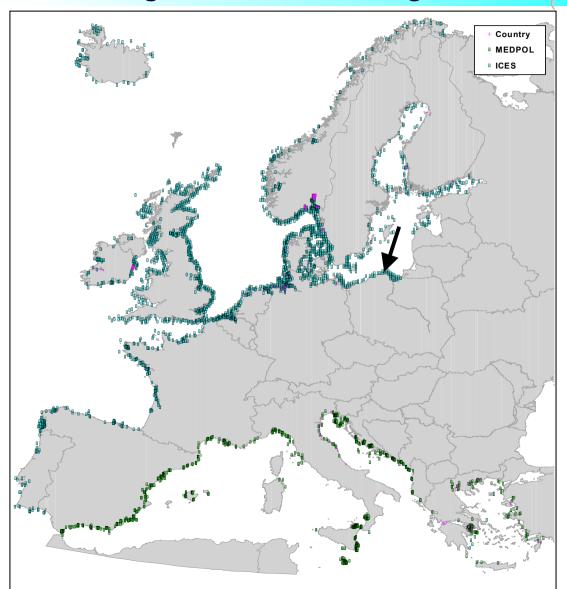
### **Echosounder for habitat** surveillance:

- Substrate type
- Hyperbenthos and macroalgae

#### **ROV-camera for measuring**


- Macrophyte abundance
- Macrophyte taxonomic composition






### Data flow and reporting

#### NIVA Datalogging / Database / Web-publishing



### NIVA hosts EEA – European Environment Agency – marine working database, delivering data to waterbase



